Optimization of the Injector Fuel Distribution For Stable, Low Emissions Combustion In Lean Premixed Gas Turbine Combustors

Kwanwoo Kim Byeong-Jun Lee Jong Guen Lee Dom Santavicca

Penn State University

Turbine Power Systems Conference Galveston, Texas

February 25-27, 2002

Can the fuel distribution be used to control combustion dynamics in lean premixed combustors?

- Can we develop a comprehensive strategy for all instabilities?
- What is the impact on NO_x emissions?

Optically Accessible Combustor

Fuel Distribution Control

To Be Studied

- the effect of the inlet fuel distribution
 - spatial and temporal
- the effect of targeted injection
 - steady and modulated

Results to Date

- effect of spatial fuel distribution
- effect of temporal fuel distribution
 - sub-harmonic injection
 - transverse fuel injection

Effect of Spatial Fuel Distribution: Test Conditions

pressure	1 atm and 2.5 atm		
inlet temperature	300°, 350°C, 400°C and 450°C		
inlet velocity	3.5, 5.0, 6.5 and 8.0 m/s		
swirl	30° and 60°		
equivalence ratio	LBO to 0.8		
fuel	natural gas		
power	40 - 180 kW		
fuel distribution	see next figure		

Fuel Distribution Measurements (PLIF)

Fuel Distribution	Injection Location (1)	Injection Location (2)	Injection Location (3)
Case 1	0%	100%	0%
Case 2	50%	50%	0%
Case 3	100%	0%	0%
Case 4	75%	0%	25%
Case 5	50%	0%	50%
Case 6	25%	0%	75%
Case 7	0%	0%	100%

Stability Map: Fuel Distribution vs. Equivalence Ratio

Inlet Velocity = 5 m/s

Swirl Angle = 30°

Inlet Temperature = 350°C

NO_x Map: Fuel Distribution vs. Equivalence Ratio

Inlet Velocity = 5 m/s

Swirl Angle = 30°

Inlet Temperature = 350°C

- Our goal is to be able to determine the fuel distribution required to achieve stable combustion over the entire operating range of any given lean premixed combustor.
- This requires an understanding of how the fuel distribution affects combustion stability in lean premixed combustors.
- An improved understanding of these effects can be obtained by studying the change in flame structure that results from a given change in the fuel distribution.

Local Rayleigh index distribution three fuel distributions

100% Upstream injection, ϕ =0.575, V=5.25m/sec, T_{in} =350°C, swirl=30°

Subharmonic Injection

finj=90Hz, dump plane injection (pulse width & $P_{\rm eq}$ combinations with similar control effectiveness using different amount of fuel)

Future Work

- → determine the effect of <u>inlet spatial fuel distribution</u> on stability and emissions over the entire operating range of the combustor.
- → determine the effect of <u>steady targeted fuel injection</u> on stability and emissions over the entire operating range of the combustor.
- → use chemiluminescence flame structure imaging to develop a <u>mechanistic explanation</u> of the effect of the inlet fuel distribution and steady targeted fuel injection on stability.

Future Work (continued)

- → formulate a methodology for using inlet fuel distribution and targeted injection to control instabilities in lean premixed combustors.
- → apply this methodology to one or more industrial injectors, e.g., Solar's Centaur 50 injector.
- → continue to investigate the use of subharmonic injection for active control of combustion dynamics using both main and secondary fuel modulation.

